Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 114: 49-62, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28411160

RESUMO

Understanding the role of geography and climatic cycles in determining patterns of biodiversity is important in comparative and evolutionary biology and conservation. We studied the phylogeographic pattern and historical demography of a rock-dwelling small mammal species from southern Africa, the rock hyrax Procavia capensis capensis. Using a multilocus coalescent approach, we assessed the influence of strong habitat dependence and fluctuating regional climates on genetic diversity. We sequenced a mitochondrial gene (cytochrome b) and two nuclear introns (AP5, PRKC1) supplemented with microsatellite genotyping, in order to assess evolutionary processes over multiple temporal scales. In addition, distribution modelling was used to investigate the current and predicted distribution of the species under different climatic scenarios. Collectively, the data reveal a complex history of isolation followed by secondary contact shaping the current intraspecific diversity. The cyt b sequences confirmed the presence of two previously proposed geographically and genetically distinct lineages distributed across the southern African Great Escarpment and north-western mountain ranges. Molecular dating suggests Miocene divergence of the lineages, yet there are no discernible extrinsic barriers to gene flow. The nuclear markers reveal incomplete lineage sorting or ongoing mixing of the two lineages. Although the microsatellite data lend some support to the presence of two subpopulations, there is weak structuring within and between lineages. These data indicate the presence of gene flow from the northern into the southern parts of the southern African sub-region likely following the secondary contact. The distribution modelling predictably reveal the species' preference for rocky areas, with stable refugia through time in the northern mountain ranges, the Great Escarpment, as well as restricted areas of the Northern Cape Province and the Cape Fold Mountains of South Africa. Different microclimatic variables appear to determine the distributional range of the species. Despite strong habitat preference, the micro-habitat offered by rocky crevices and unique life history traits likely promoted the adaptability of P. capensis, resulting in the widespread distribution and persistence of the species over a long evolutionary period. Spatio-temporal comparison of the evolutionary histories of other co-distributed species across the rocky landscapes of southern Africa will improve our understanding of the regional patterns of biodiversity and local endemism.


Assuntos
Procaviídeos/classificação , África Austral , Animais , Evolução Biológica , Mudança Climática , Citocromos b/classificação , Citocromos b/genética , Fluxo Gênico , Variação Genética , Genótipo , Haplótipos , Procaviídeos/genética , Isoenzimas/classificação , Isoenzimas/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia , Filogeografia , Proteína Quinase C/classificação , Proteína Quinase C/genética , Fosfatase Ácida Resistente a Tartarato/classificação , Fosfatase Ácida Resistente a Tartarato/genética
2.
Cytogenet Genome Res ; 137(2-4): 144-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22868637

RESUMO

Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Mamíferos/classificação , Mamíferos/genética , África , Animais , Bandeamento Cromossômico , Análise Citogenética , Diploide , Feminino , Humanos , Procaviídeos/classificação , Procaviídeos/genética , Masculino , Filogenia , Mamífero Proboscídeo/classificação , Mamífero Proboscídeo/genética , Sirênios/classificação , Sirênios/genética , Xenarthra/classificação , Xenarthra/genética
3.
Proc Biol Sci ; 274(1615): 1333-40, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17374594

RESUMO

Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2n=56), Procavia capensis (2n=54), Trichechus manatus latirostris (2n=48) and an outgroup taxon, the aardvark (Orycteropus afer, 2n=20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events.


Assuntos
Coloração Cromossômica , Elefantes/genética , Procaviídeos/genética , Trichechus manatus/genética , Animais , Elefantes/classificação , Evolução Molecular , Procaviídeos/classificação , Masculino , Filogenia , Trichechus manatus/classificação
4.
Mol Phylogenet Evol ; 9(3): 501-8, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9667998

RESUMO

A solution to higher level mammalian phylogeny is going to depend on the congruent establishment of superordinal groupings followed by a linking together of these clades. We present congruent and convincing evidence from four disparate nuclear protein coding genes and from a tandem alignment of the 12S-16S mitochondrial region, for a superordinal clade of endemic African mammals that includes elephant shrews, aardvarks, golden mole, elephants, sirenians, and hyraxes. Because of strong support for golden mole as part of this clade, the Insectivora are rendered paraphyletic or polyphyletic, with constrained monophyly of the insectivores judged significantly worse in the vast majority of tests. Branching arrangement within this clade remains highly uncertain; however, a tandem alignment of the protein coding genes suggests elephant shrew is the earliest African lineage. None of the individual data sets or combinations of data sets support the widely held view of a mirorder Tethytheria (Sirenia/Proboscidea), although only a tandem alignment of protein coding and mitochondrial loci significantly rejects this association. The majority of the data sets and analyses provide strong support for Caviomorpha as part of a monophyletic Rodentia.


Assuntos
Aquaporinas , Evolução Molecular , Mamíferos/classificação , Mamíferos/genética , Filogenia , África , Animais , Aquaporina 2 , Aquaporina 6 , Carnívoros/classificação , Carnívoros/genética , Elefantes/classificação , Elefantes/genética , Humanos , Procaviídeos/classificação , Procaviídeos/genética , Canais Iônicos/genética , Funções Verossimilhança , Modelos Genéticos , Toupeiras/classificação , Toupeiras/genética , Receptores Adrenérgicos alfa 2/genética , Roedores/classificação , Roedores/genética , Alinhamento de Sequência , Xenarthra/classificação , Xenarthra/genética , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...